Journal of Organometallic Chemistry, 202 (1980) 107–114 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METHYL- AND PHENYL-BIS(TERTIARY PHOSPHINE) N-BONDED CARBOXAMIDO COMPLEXES OF PLATINUM(II)

D.P. ARNOLD and M.A. BENNETT *

Research School cf Chemistry, The Australian National University, P.O. Box 4, Canberra, A.C.T. 2600 (Australia) (Received May 14th, 1980)

Summary

Methyl- or phenyl-N-carboxamido-complexes of platinum(II) Pt(NHCOR')RL₂ (L = PEt₃, R = Me, R' = Me, CH=CH₂; L = PEt₃, R = Ph, R' = Me; L = PMe₂Ph, R = Ph, R' = Me, Ph; L = PMePh₂, R = Ph, R' = Me; L = PPh₃, R = Ph, R' = Me) * have been prepared by the reaction of KOH with cationic nitrile complexes [PtR(NCR')L₂]BF₄. Thermally unstable hydrido-N-carboxamido-complexes could be detected spectroscopically. IR and NMR (¹H, ³¹P) spectra of some of the complexes indicate the existence of a solvent- and temperature-dependent equilibrium between *syn*- and *anti*-isomers arising from restricted rotation about the N=C bond of the carboxamido-group. The *anti*-isomer is favoured by nonpolar solvents and by increasing bulk of L. In the complex [PtH(NCCH= CH₂)(PEt₃)₂]BF₄, IR and NMR spectra show acrylonitrile to be bound through nitrogen, not through the olefinic C=C bond.

Introduction

Monomeric hydroxoplatinum(II) complexes stabilized by tertiary phosphines catalyse homogeneously the addition of water to nitriles to give carboxamides [1-3], and it has been shown that N-bonded carboxamido complexes containing the moiety Pt--NHCOR' (R' = alkyl or aryl) are important intermediates in the catalytic cycle. Representatives of this class of compound which have been characterized include the monomeric complexes *trans*-PtCl(NHCOPh)-(PEt₃)₂ [4], *trans*-Pt(NHCOMe)R(PPh₃)₂ (R = Me, C₆H₉) [1,2], Pt(NHCOMe)Me-(dppe) [5] and Pt(NHCOR')(C₆H₉)(dppe) (R' = Me, Ph) [2] and the dimeric complexes [Pt(CH₂CONH)(PPh₃)₂]₂ [6] and [Pt(CH₂C₆H₄CONH)(PPh₃)₂]₂ [7].

^{*} Abbreviations: Me, methyl; Et, ethyl, Ph, phenyl; C₆H₉, 1-cyclohexenyl; dppe, 1,2-bis(diphenylphosphino)ethane; COD, 1,5-cyclooctadiene.

We report here the preparation of a series of *N*-carboxamido-complexes containing a variety of tertiary phosphines.

Results and discussion

Treatment of trans-PtClRL₂ (R = Me, Ph; L = various tertiary phosphines) or trans-PtHClL₂ with AgBF₄ in the presence of a nitrile (R^{\prime}CN) gives the corresponding cationic nitrile complexes trans- $[PtR(NCR')L_2]^*$ [8] and trans-[PtH- $(NCR')L_2$ [†]. The former can usually be isolated as hygroscopic BF₄⁻ salts which are stable under dry nitrogen for several hours and are very soluble in dichloromethane; the salts $[PtPh(NCMe)L_2]BF_4$ (L = PMe₂Ph, PMePh₂) form viscous uncrystallizable oils. Owing to their instability the corresponding hydrido cations have been less extensively studied than the phenyl and methyl analogues. However, the p-toluonitrile and acrylonitrile salts $[PtH(NCR')(PEt_3)_2]BF_4(R' =$ $p-C_{c}H_{4}Me$, $CH_{2}=CH$) form colourless crystals which were identified spectroscopically. In all the complexes the $\nu(CN)$ band is at higher frequency than that in the free nitrile, indicative of N-bonding. The olefinic proton resonances of [PtMe(NCCH=CH₂)(PEt₃)₂]BF₄ and of [PtH(NCCH=CH₂)(PEt₃)₂]BF₄ are shifted downfield with respect to free acrylonitrile, again indicative of N-bonding rather than η^2 -olefin bonding in both cases. The same conclusion has been reached for the analogous dimethylphenylphosphine-containing cation [PtMe- $(NCCH=CH_2)(PMe_2Ph)_2$ ⁺ [8]. Moreover, the magnitude of ¹J(PtH) in [PtH- $(NCCH=CH_2)(PEt_3)_2$ |BF₄ (1234 Hz) equals that in the corresponding p-toluonitrile species and is much larger than that reported for the ethylene complex trans-[PtH(C_2H_4)(PEt_3)₂]⁺ (908 Hz) [9]. Likewise, the magnitude of ²J(PtCH₃) in trans-[PtMe(NCCH=CH₂)(PEt₃)₂]⁺ (79 Hz) is very similar to that of the corresponding acetonitrile cation and is larger than that of the ethylene cation $trans{PtMe(C_2H_4)(PMe_2Ph)_2}^{+}$ (74.2 Hz) [10].

Reaction of the methyl- or phenyl-platinum(II) nitrile salts with aqueous KOH gives *N*-carboxamido-complexes Pt(NHCOR')RL₂ (L = PEt₃, R = Me, R' = Me, CH=CH₂; L = PEt₃, R = Ph, R' = Me; L = PMe₂Ph, R = Ph, R' = Me, Ph; L = PMePh₂, R = Ph, R' = Me; L = PPh₃, R = Ph, R' = Me) as hygroscopic, microcrystalline, white or pale cream solids. Even after recrystallization and drying in vacuo, the complexes retain ca. 0.3 mol of water as shown by ¹H NMR spectroscopy (see Table 2). The triethylphosphine complex Pt(NHCOMe)Me-(PEt₃)₂ liquefies immediately on exposure to moist air and can only be obtained as a solid after recrystallization from n-pentane/isopentane. Most of the complexes decompose slowly on storage, even under nitrogen, but the benzamidocomplexes appear to be stable indefinitely in air.

Reaction of the hydrido-platinum(II) nitrile salts with aqueous KOH results in decomposition, but spectroscopic evidence for unstable species PtH(NHCOMe)-(PPh_3)₂ and $PtH(NHCOC_6H_4Me)(PEt_3)_2$ was obtained (see Experimental).

The solid state IR spectra of the new complexes show a very weak ν (NH) band in the 3300–3500 cm⁻¹ region; in chloroform, two such bands are observed in some cases owing to the presence of isomers (see below). A broad, intense amide ν (C=O) band appears in the region 1578–1612 cm⁻¹, sometimes overlapping with bands due to aromatic ring vibrations. The ³¹P{¹H} NMR spectra consist of singlets with ¹⁹⁵Pt satellites [¹J(PtP) ca. 3000 Hz] and confirm TABLE 1

R	R'	L	¹ H NMR	IR		
			δ _R [J(PtH), J(PH)]	$\delta_{\rm R}, [J(PtH)]$	v(CN)	ν(BF)
Ph	Ph	PMe ₂ Ph			2250s	1060s(br)
Ph	Ме	PMe ₂ Ph		3.03s(br)	2250s, 2130w	1060s(br)
Ph	Me	PPh ₃		1.43s (6.5)	2280w, 2130w	1060s(br)
Ме	Ме	PEt ₃	0.33 (79, 7)	2.40s (7)	2290w, 2310w	1040s(br)
Me	CH ₂ =CH	PEta	0.42 (79.7)	6.0 -6 .8m	2255m	1050s(br)
H	Me	PPh ₃	-15.7 (1152, 12)	1.66br s	2250vw 6	² 1050s(br)
н _р	p-MeC ₆ H ₄	PEt ₃	-17.3 (1234, 14.5)	2.42s (Me), 7.38–7.70m (C ₆ H ₄)	2235s ^d	1050s(br)
н ^b	CH ₂ =CH	PEt ₃	-17.0 (1234, 14.5)	5.8-6.8m	nm	nm

SELECTED ¹H NMR AND IR SPECTROSCOPIC DATA FOR [PtR(NCR')L₂]BF₄ COMPLEXES ^a

^a ¹H NMR spectra (chemical shifts in ppm, J in Hz) measured in CDCl₃ except where stated; IR data (cm⁻¹) refer to Nujol mulls. Abbreviations: (¹H NMR) br, broad; s, singlet; m, multiplet; (IR) s, strong; m, medium; w, weak; nm, not measured. ^b ¹H NMR spectra measured in CD₂Cl₂. ^c ν (PtH) 2270 cm⁻¹ (vw). ^d ν (PtH) 2260 cm⁻¹ (vw).

that all the complexes have mutually trans-phosphine ligands. In the case of the complexes containing PMe_2Ph or $PMePh_2$, the $P-CH_3$ resonances in the ¹H NMR spectra consist of a 1 : 2 : 1 triplet with ¹⁹⁵Pt satellites, as expected for trans-phosphines. The ¹H NMR spectra of all the complexes exhibit broad resonances in the region δ 3.1–4.5 ppm assignable to NH and the N-acetamidocomplexes also show singlets in the range δ 0.9–2.1 ppm due to COCH₃. In the case of the complexes $Pt(NHCOMe)PhL_2$ (L = PMe₂Ph, PMePh₂, PEt₃) and Pt(NHCOR')Me(PEt₃)₂ (R' = Me, CH=CH₂), there is ¹H and ³¹P NMR spectroscopic evidence for the presence of two isomers in solution, whereas Pt(NHCOMe)Ph(PPh₃)₂, Pt(NHCOPh)Ph(PMe₂Ph)₂, and the previously reported N-carboxamido-complexes $Pt(NHCOR')(C_6H_9)(dppe)$ (R' = Me, Ph) [2,4] and trans-Pt(NHCOCH₃)R(PPh₃), (R = Me, C₆H₉) show only one isomer. The similarity of the NH chemical shifts in each case, and of the COCH₃ chemical shifts in the isomers of the N-acetamido complexes, rules out the possibility of an amide \neq imino-enol tautomerism, Pt-NHCOR' \Rightarrow Pt-N=C(OH)R'. Moreover, no signals are observed in the region δ 9–11 ppm, where the OH resonance of imino-enol complexes of planar platinum(II) and octahedral platinum(IV) is reported to appear [11]. The isomers are therefore believed to be anti- and syn-rotamers (I and II, respectively) arising from restricted rotation about the N:::C bond of the carboxamido group.

Irradiation of the ¹⁴N nuclei in Pt(NHCOMe)Ph(PMe₂Ph)₂ enabled the ¹⁹⁵Pt satellites of the NH resonance of each isomer to be located. The similarity of the values of ²J(PtNH) for the two isomers (ca. 16 Hz, 13 Hz) provides clear evidence against the existence of amide \Rightarrow imino-enol tautomerism. The isomer ratios estimated from ¹H or ³¹P{¹H} NMR spectra vary with solvent (Table 3); in the case of Pt(NHCOMe)PhL₂ (L = PMe₂Ph, PMePh₂), only one isomer is observed in toluene- d_8 , whereas two isomers are observed in CDCl₃. In all

Complex	NMR				111		
	<i>Б</i> (R')	(IIII)9 .	6(P)	(d1d)/'1	μ(C=0)	(III)	n an a subject of the
						Nufol	CHCI 3
Pt(NHCOMe)Ph(PMe2Ph)2 ^b	1.72(2)	3.66(2) ^c 2.00/1 / d	-5,2(2)	2876	1608s	3492vw	331 6vv
Рt(IN11СОРһ)Рh(PMe2Ph)2 ^e	(1)	4.55	5.0	2874	1600s	3385vw	3370VW
Pt(NIICOMe)Ph(PMePh2)2	1.31(3)	3.30(3)	7.8(3)	3025			
	1,23(1)	3.76(1)	6,4(1)	2991	1595s	3375vw	
Pt(NHCOMe)Ph(PPh ₃) ₂	0,91	3.07 #	22.1	3176	1612m	3375vw	3380 w
					(1600m) ¹	(3380vw) ^h	
Pt(NHCOMe)Ph(PEL3)2	2.07(4)	3,94(4)	12,9(4)	2776	1600(sh)	3315w	3412vw
					10001		
••	1,94(1)	3.67(1)	12,7(1)	2815	(1578s)		331 5 vw
Pt(NHCOMe)Me(PEt3)2 ^J	1,90(3,5)	3.83(3.5)	15.9(3.5)	2810			3319vw
	1,91(1)	3,68(1)	14.9(1)	28.17	1565s(br) [†]		3372vw
$P((NHCOCH=CH_2)Me(PEt_3)2^{R}$	5,0-6,2	3,82(4)			. '		
	(ABC)	3.14(1)			1578s ^h	3240w(br) ^h	

.

TABLE 2

cases, evaporation of one solvent and dissolution in another gives the isomer ratio characteristic of the second solvent, so that irreversible processes are not occurring. The predominant isomer probably has the platinum atom and the amide substituent R' in an *anti*-orientation, since in N, N'-disubstituted amides the more bulky N-bound group tends to be *cis* to the carbonyl oxygen atom [12]. The chemical shifts of both the NH and $COCH_3$ signals also vary markedly with solvent and temperature. Similar phenomena have been reported for imidoyl complexes such as trans-PtCl(CH=NC₆H₄Me-p)(PEt₃)₂, in which the equilibrium between syn- and anti-isomers is delicately balanced and sensitive to small changes in solvation energies [13]. The appearance of only one isomer in some cases (see above), which appears to be favoured by non-polar solvents, could be attributed to rapid rotation about the N...C bond leading to a timeaveraged signal. However, the fact that the complexes involved contain the bulkiest ligand suggests sterically promoted destabilization of one isomer as a more likely explanation. In the case of $Pt(NHCOMe)Me(PEt_3)_2$, a variable temperature NMR study, using toluene- d_s as solvent and hexamethyldisiloxane as internal lock, showed that the NH and $COCH_3$ signals for the two rotamers coalesce at 80° C and give rise to a broad, averaged signal at 113° C. The original spectrum is observed on cooling to 30°C.

We have noted previously [3] that the chemical shifts of the NH protons in carboxamido complexes containing dppe are 3–4 ppm to lower field than those of similar complexes containing *trans*-triphenylphosphine ligands. In the series *trans*-Pt(NHCOMe)Ph(PMe_{3-n}Ph_n)₂ (n = 1–3), the values of $\delta(NH)$ and $\delta(COCH_3)$ in CDCl₃ for the most abundant rotamer shift linearly to higher field with

TABLE 3 NMR PARAMETERS AND ISO	MER RATIOS IN DI	FERENT SOLVE	NTS		
Complex	Solvent	δ(COMe)	Isomer ratio ^a	-	
Pt(NHCOMe)Me(PEt ₃) ₂	cyclo-C ₆ D ₁₂	1.81	one isomer	~	
	C ₆ D ₅ CD ₃	2.14, 2.24	4:1		
	CD 3CN	1.83, 1.89	2.25:1		
	CDC13	1.90, 1.91	3.5:1		
Pt(NHCOMe)Ph(PMe2Ph)2	$C_6D_5CD_3$	2.10	one isomer		
	CDCl ₃	1.72, 1.75	2:1		
Pt(NHCOMe)Ph(PMePh ₂) ₂	C ₆ D ₅ CD ₃	1.27	one isomer		
	CDC13	1.31, 1.23	3:1		

^a Estimated from ¹H NMR peak heights or by integration.

increasing *n* (Table 2). This correlation suggests that the N-carboxyamido ligand adopts the same configuration (presumably *anti*) in all three cases. The trend can probably be attributed to anisotropic shielding by the phenyl rings of mutually *trans*, phenyl-substituted tertiary phosphines, since a similar effect has been observed on alkyl group (R) proton resonances in octahedral iridium(III) complexes *trans*-IrCl₂R(CO)(PPh₃)₂ [14].

Experimental

TABLE 4

IR spectra were measured on PE457 or 225 spectrometers calibrated with polystyrene. ¹H NMR spectra were obtained on Jeol PMX-60, Jeol MH-100 or Varian HA-100 instruments using TMS or CH_2Cl_2 as internal reference. ³¹P{¹H} spectra were obtained on a modified Bruker 322S instrument. Microanalyses and osmometric molecular weight determinations were performed in the Microanalytical Laboratories of the Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University. Spectroscopic data for the nitrile and carboxamido complexes are given in Tables 1 and 2 respectively, analytical data are in Table 4.

AR grade solvents were used without further purification. The complexes PtHClL₂ (L = PEt₃, PPh₃) [15] and PtIMe(PPh₃)₂ [16] were prepared by literature methods. Other complexes of formula *trans*-PtClRL₂ were prepared by displacement of 1,5-cyclooctadiene from PtClR(COD) (R = Me, Ph) [5,17] by two molar equivalents of the tertiary phosphine (L) in dichloromethane, as described previously [18].

Complex	Melting point °C	Analysis found (caled.) (%)			
		с	н	P	N
[PtPh(NCPh)(PMe ₂ Ph) ₂]BF ₄	134-136(d)	47.3	4.1	8,25	1.7
		(47.2)	(4.4)	(8.4)	(1.9)
[PtPh(NCMe)(PPh_3)2]BF4	196-200(d)	57.1	4.15	6.6	1.3
		(57.2)	(4.1)	(6.7)	(1.5)
Pt(NHCOMe)Ph(PMe2Ph)2	107-109	47.9	5.1	10.3	2.15
		(47.5)	(5.15)	(10.2)	(2.3)
Pt(NHCOPh)Ph(PMe ₂ Ph) ₂	130-134	52.25	4.9	9.1	1.9
		(52.1)	(5.0)	(9.3)	(2.1)
Pt(NHCOMe)Ph(PMePh ₂) ₂	160—165(d)	56.0	4.9	8.6	1.7
		(55.9)	(4.8)	(8.5)	(1.9)
Pt(NHCOMe)Ph(PPh ₃) ₂ ^a	167-172(d)	62.15	4.8	7.35	1.5
		(61.8)	(4.6)	(7.25)	(1.6)
Pt(NHCOMe)Ph(PEt ₃) ₂	120125(d)	42.4	6.8	10.8	2.5
		(42.4)	(6.9)	(10.9)	(2.5)
Pt(NHCOMe)Me(PEt ₃) ₂	35-38	36.5	7.8	11.7	
		(35.7)	(7.4)	(12.3)	
Pt(NHCOCH=CH ₂)Me(PEt ₃) ₂	7276(d)	37.4	7.2	11.8	
		(37.2)	(7.2)	(12.0)	

^a Mol. wt. (osmometry, CH₂Cl₂, 35°C): found, 795; caled. 855.

Preparations

(1) Nitrilebis(tertiary phosphine)phenyl- or methyl-platinum(II) tetrafluoroborates, trans-[PtR(NCR')L₂]BF₄, and N-carboxamidobis(tertiary phosphine)phenyl- or methyl-platinum(II) complexes trans-Pt(NHCOR')RL₂. (i) A solution of PtClPh(PMe₂Ph)₂ (0.29 g, 0.5 mmol) in acetonitrile (3 ml) was treated with silver tetrafluoroborate (0.097 g, 0.5 mmol) dissolved in acetonitrile (1 ml). The mixture was stirred for 5 min at room temperature, then the precipitated silver chloride was filtered off and washed with dichloromethane (3 ml). Evaporation of the combined filtrate and washings to dryness gave a clear, colourless oil. Dissolution in dichloromethane (1 ml) and addition of ether gave trans-[PtPh(NCMe)(PMe₂Ph)₂]BF₄ quantitatively as an oil which foamed in vacuo and was identified by its ¹H NMR spectrum (Table 1).

The salt was dissolved in acetonitrile (4 ml) and was stirred for 2 h with a solution of potassium hydroxide (0.028 g, 0.5 mmol) in water (1 ml). Solvents were evaporated and the residual brown oil was dissolved in dichloromethane $(3 \times 2 \text{ ml})$, filtered through Celite and concentrated in vacuo. Addition of ether/n-pentane (1/1) precipitated some brown oily material. After cooling to 0°C, the clear supernatant liquid was decanted and further concentrated to give colourless crystals of *trans*-Pt(NHCOMe)Ph(PMe₂Ph)₂, which were washed with n-pentane and dried in vacuo. The yield was 0.18 g (60% based on PtClPh-(PMe₂Ph)₂).

The following carboxamido complexes were prepared similarly, with variations and yields based on the starting $PtClRL_2$ complex as indicated. (ii) trans-Pt-(NHCOPh)Ph(PMe,Ph), was prepared from PtClPh(PMe,Ph), in benzene/dichloromethane containing a fourfold excess of benzonitrile and was recrystallized from dichloromethane/ether/n-pentane as shiny colourless crystals (84%). The intermediate $[PtPh(NCPh)(PMe_2Ph)_2]BF_4$ formed fine colourless needles from dichloromethane/ether. (iii) trans-Pt(NHCOMe)Ph(PMePh₂)₂ was prepared as off-white crystals (43%) as in (i). (iv) trans-Pt(NHCOMe)Ph(PPh₃)₂: colourless crystals (66%), prepared as in (i). The intermediate [PtPh(NCMe)(PPh₃)₂]BF₄ formed colourless crystals from dichloromethane/ether. (v) trans-PtPh(NHCOMe)- $(PEt_3)_2$. The crude product from dichloromethane, prepared as in (i), was kept at 30° C/ 10^{-5} mm to remove acetamide. It was redissolved in dichloromethane and n-pentane was added to the solution to precipitate some coloured impurity. Evaporation of the decanted supernantant liquid gave the product as shiny, colourless crystals (67%). (vi) trans-Pt(NHCOMe)Me(PEt₃)₂ was prepared as in (i). The crude product was extracted with ether/isopentane (1/10) and the extract was evaporated to dryness to afford a turbid oil which slowly crystallized in vacuo. Recrystallization from n-pentane/isopentane at -40°C gave waxy colourless crystals (ca. 70% yield) which liquefied immediately in moist air. (vii) trans- $Pt(NHCOCH=CH_2)Me(PEt_3)$, was prepared as in (i), using acrylonitrile as solvent for the first step and dichloromethane for the reaction with KOH. The yellow oil obtained after removal of dichloromethane was taken up in the minimum volume of ether. Isopentane was added to precipitate some coloured oil. The supernantant liquid was decanted and treated with more isopentane to precipitate more oil. Finally, a colourless solution was obtained which, on concentration and cooling to -20° C, gave pale yellow crystals of the product (26%).

(2) Attempted preparation of PtH(NHCOMe)(PPh₃)₂. The salt [PtH(NCMe)-

 $(PPh_3)_2$]BF₄, prepared from PtHCl(PPh₃)₂ and AgBF₄ as in (1) (i), was treated with an equimolar quantity of aqueous KOH. The dark oil obtained after removal of solvents gave a pale cream solid after recrystallization from dichloromethane/n-hexane at -20°C; its IR spectrum showed bands at 2192w cm⁻¹ due to ν (PtH) and at 3380vw and 1580m(br) cm⁻¹ due to Pt--NHCOCH₃, but rapid decomposition prevented analytical or ¹H NMR spectroscopic characterization.

(3) Attempted preparation of PtH(NHCOC₆H₄Me-p)(PEt₃)₂. Treatment of PtHCl(PEt₃)₂ with AgBF₄ in acetone containing a 50% excess of p-toluonitrile gave colourless crystals of trans-[PtH(NCC₆H₄Me-p)(PEt₃)₂]BF₄ from ether/n-pentane, which were identified by IR and ¹H NMR spectra (Table 1). Reaction of this salt, dissolved in dichloromethane, with aqueous KOH at 0°C gave an inseparable mixture of unstable products. The dichloromethane was evaporated at low temperature and the solid residue was redissolved in CDCl₃. The ¹H NMR spectrum showed peaks at δ (ppm) -14.8 (br s, PtH), 2.3 (s, C₆H₄CH₃) and 5.0 (br s, NH) which may be due to PtH(NHCOC₆H₄Me-p)(PEt₃)₂.

(4) Acrylonitrilebis(triethylphosphine)hydridoplatinum(II) tetrafluoroborate, trans-[PtH(NCCH=CH₂)(PEt₃)₂]BF₄. Silver tetrafluoroborate (0.049 g, 0.25 mmol) was added to a solution of PtHCl(PEt₃)₂ (0.117 g, 0.25 mmol) in acrylonitrile (2 ml). After removal of AgCl by filtration, the solvent was evaporated to yield a colourless oily solid. Trituration with n-pentane (1 ml) containing a few drops of ether gave colourless crystals of the product which were stable under nitrogen for several hours and were identified by their 'H NMR and IR spectra (Table 1).

References

- 1 M.A. Bennett and T. Yoshida, J. Amer. Chem. Soc., 95 (1973) 3030.
- 2 M.A. Bennett and T. Yoshida, J. Amer. Chem. Soc., 100 (1978) 1750.
- 3 T. Yoshida, T. Matsuda, T. Okano, T. Kitani and S. Otsuka, J. Amer. Chem. Soc., 101 (1979) 2027.
- 4 W. Beck and M. Bauder, Chem. Ber., 103 (1970) 583.
- 5 T.G. Appleton and M.A. Bennett, Inorg. Chem., 17 (1978) 738.
- 6 R. Ros, R.A. Michelin, R. Bataillard and R. Roulet, J. Organometal. Chem., 161 (1978) 75.
- 7 R. Ros, R. Renaud and R. Roulet, J. Organometal. Chem., 104 (1976) 271.
- 8 H.C. Clark and J.D. Ruddick, Inorg. Chem., 9 (1970) 1226; H.C. Clark and L.E. Manzer, Inorg. Chem., 10 (1971) 2699.
- 9 A.J. Deeming, B.F.G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., (1973) 1848.
- 10 M.H. Chisholm and H.C. Clark, Inorg. Chem., 12 (1973) 991.
- 11 D.B. Brown, R.D. Burbank and M.B. Robin, J. Amer. Chem. Soc., 91 (1969) 2895.
- 12 L.A. Planche and M.T. Rogers, J. Amer. Chem. Soc., 85 (1963) 3728.
- 13 D.F. Christian, H.C. Clark and R.F. Stepaniak, J. Organometal. Chem., 112 (1976) 209.
- 14 M.A. Bennett, R. Charles and T.R.B. Mitchell, J. Amer. Chem. Soc., 100 (1978) 2737.
- 15 J. Chatt and B.L. Shaw, J. Chem. Soc., (1962) 5075.
- 16 J. Chatt and B.L. Shaw, J. Chem. Soc., (1959) 705.
- 17 H.C. Clark and L.E. Manzer, J. Organometal. Chem., 59 (1973) 411.
- 18 C. Eaborn, K.J. Odell and A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 357.